ŞANLIURFA METROPOLITAN MUNICIPALITY

Climate Change Risk and Vulnerability Assessment Report

Şanlıurfa Metropolitan Municipality Climate Change and Zero Waste Department October 2022

SANLIURFA METROPOLITAN MUNICIPALITY

Climate Change Risk and Vulnerability Assessment Report

Published by:

Sercan GELENER Climate Change and Zero Waste Department Chairman

> Mehmet DEMİR Climate Change Branch Manager

Dilek ERKAN Environmental Engineer, Climate Change Branch

Tamer ATALAY- Soner ATALAY Project Consultants - ATALAY Consulting www.atalayconsulting.com

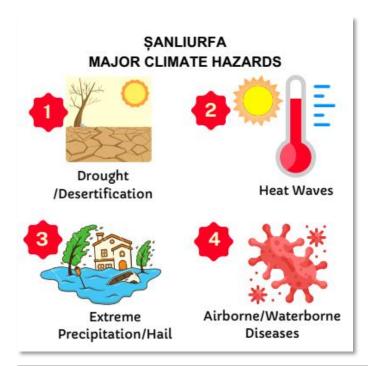
ŞANLIURFA- October 2022

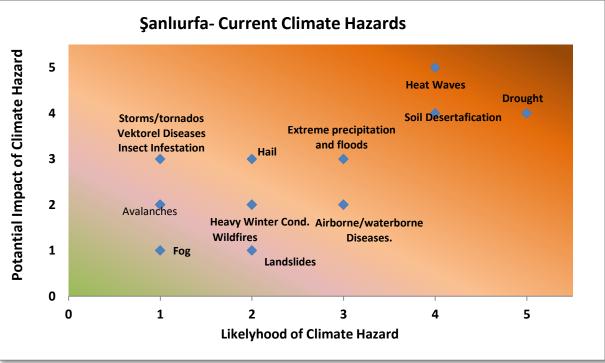
Table of Contents

EXECUTIVE SUMMARY	3
1. Climate Change Action Plan and City Context	6
1.1 Structure and Organization of CCAP Management	6
1.2 City Information	7
2. Climate Hazards Risk and Vulnerability Assessment	9
2.1 Applied Methodology	9
2.2 Climate Hazards and Current Risk Assessment	11
2.3 Future Risk Assessment of Climate Hazards	13
2.4 Şanlıurfa Climate Projections	
3. Adaptation Strategies and Objectives	21

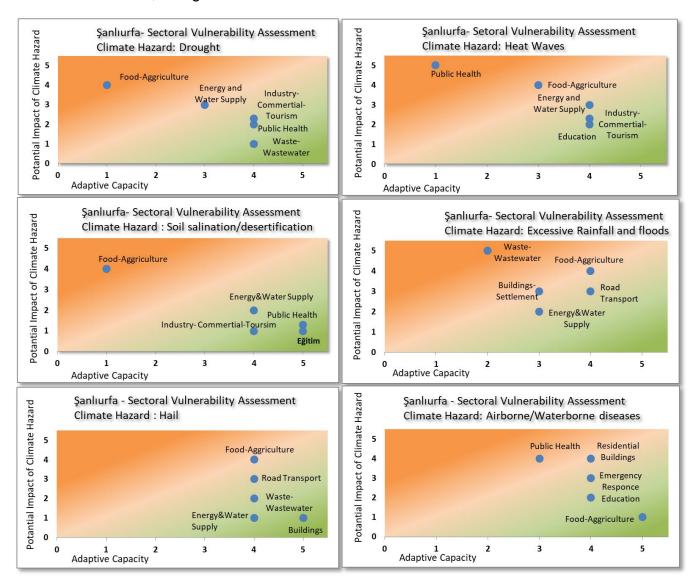
Figures

Figure 1 - Şanlıurfa CCAP Stakeholder Workshop - May 2022	7
Figure 2 - Current Status Climate Hazards Graph	13
Figure 3 - Sectoral Vulnerability Graphs	17
Figure 4 - Extreme Temperature and Drought Projections	20


Tables

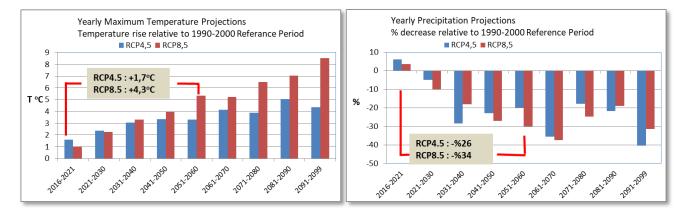

Table 1 - CCAP Stakeholder Consultation Meeting Results	6
Table 2 - General Inventory Information of Şanlıurfa	
Table 3 - Climate Hazards and Potential Impacts	
Table 4 - Climate Hazards Risk Assessment	11
Table 5- Sectoral Impacts of Climate Hazards	13
Table 6 – Sectoral Vulnerability Analysis	15
Table 7 – Climate Projection Data for Reference Period and Future Period	18
Table 8 – Climate Projections	19

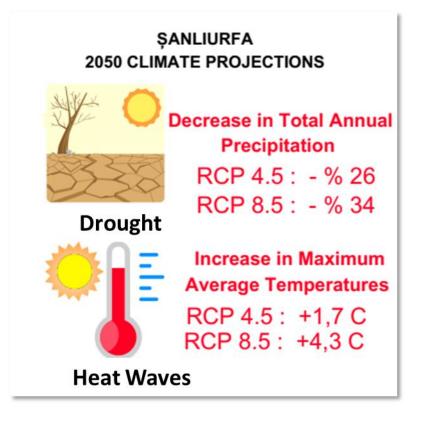
EXECUTIVE SUMMARY


Climate Hazards, Risk and Vulnerability Analysis

Climate Hazards, Risk and Vulnerability assessment has been performed by means of surveys to define the climate hazards which have the most serious potential impact to the city services and inhabitants.

Services or sectors with low adaptive capacity to potential future climate impacts in Şanlıurfa are shown in the chart below. In the chart; red areas indicate vulnerable services or sectors, and green areas indicate resilient services or sectors.




Climate Projections

In order to evaluate the future situation of drought and heat waves during the preparation of Şanlıurfa Climate Change Action Plan; HadGEM2-ES global data set family and RegCM4.3.4. regional climate model and Representative Concentration Pathways (RCP) scenarios were used. Among these scenarios, RCP 4.5 refers to the medium level of radiative forcing and global warming. RCP8.5 refers to the highest possible radiative forcing and the worst global warming scenario to be encountered in the future.

According to these projections; temperature increases of 2.1 - 2.7 °C in the average monthly highest temperatures between 2050-2060, are expected, in line with the RCP4.5-RCP8.5 scenarios (according to the 2016-2021 base period). In the highest temperatures of the year, temperature rise will be around **1.7 - 4.3** °C. These situations will increase the

frequency and severity of heat waves. if no adaptation action programme is implemented, heat waves may result catastrophic impacts on many sectors, especially on public health. According to the RCP 4.5- RCP 8.5 scenarios, a decrease of **26% - 34%** is expected in the annual total precipitation. Decrease in the amount of precipitation may lead to increase drought hazard in the GAP region. Soil salinization may reach even more serious levels in the region if efficient irrigation systems are not implemented. Excessive irrigation will also increase the water consumption and energy needs.

1. Climate Change Action Plan and City Context

1.1 Structure and Organization of CCAP Management

The preparation process of the Şanlıurfa Climate Change Action Plan (CCAP) began in February 2022 with CCAP Working Group training and was completed in October 2022 after an 8-month effort.

The CCAP Working Group has been involved in all stages of the process and has managed the project. They have played roles in data collection for the greenhouse gas inventory, communication with stakeholders, conducting surveys for risk and vulnerability analyses, and organizing the stakeholder consultation workshop.

The CCAP Report, prepared by Şanlıurfa Metropolitan Municipality with contributions from all city stakeholders and includes:

- The base year greenhouse gas inventory
- Risk and vulnerability assessment of current and future climate hazards
- Greenhouse gas and climate projections
- Mitigation scenario analyses
- Adaptation and mitigation action programs

The Greenhouse Gas Inventory studies were completed in April 2022, with inventory calculations performed separately for the years 2018, 2019, 2020, and 2021 using the GPC Protocol and CIRIS calculation tool. The detail level of the inventory is Basic+, and 2021 was chosen as the base year for the inventory.

For risk and vulnerability analyses, three separate surveys were conducted using the analysis method recommended by the Global Covenant of Mayors (GCoM).

In the climate projections study, maximum temperatures and total annual precipitation parameters were obtained from the Turkish State Meteorological Service for the reference period covering 1970-2000 and the projection period covering 2016-1998.

During the two-day stakeholder consultation meeting held in May, greenhouse gas inventory and climate risk and vulnerability analyses were evaluated, and action proposals for mitigation and adaptation were developed. A total of 152 mitigation action proposals and 75 adaptation action proposals were submitted by 94 stakeholder representatives from 37 different institutions.

Şanlıurfa CCAP Stakeholder Engagement Workshop				
Workshop Roundtable GroupNumber of ParticipantsMitigation ProposalsAdaptation Proposals				
Climate-Resilient Settlements and Living Spaces	14	33	15	
Healthy Urban Life	13	6	5	

Table 1 - CCAP Stakeholder Consultation Meeting Results

Efficient Agriculture and Food Security	14	43	13
Clean Energy-Green Industry	13	7	7
Sustainable Water and Waste Management	13	24	6
Energy Efficient Carbon Zero Buildings	13	8	12
Green and Smart Urban Transportation	14	31	17
Total	94	152	75

Figure 1 - Şanlıurfa CCAP Stakeholder Workshop - May 2022

A new organizational change was made to manage the CCAP processes within the Şanlıurfa Metropolitan Municipality, establishing the Climate Change Branch under the Department of Climate Change and Zero Waste.

1.2 City Information

General city data related to CCAP processes are provided in the table below:

City	ŞANLIURFA
Region	South-eastern Europe
Inventory Year	2021
Geographical Boundary	Geographical Boundaries of Şanlıurfa Province
City Area	19.220 km ²
Population ³	2.143.020

Table 2 - General Inventory Information of Şanlıurfa

Gross Domestic Product (GDP) ³	42.770.000.000 TL (2020) ; 6,22 billion USD; 2901 \$/capita
Economic Structure of the City ³	Industry (19%), Services (17%), Agriculture (26%), Public (26%)
Land Use (Share of Turkey)	65% Agricultural Land (4.5% of Turkey's total)
City's Climate Classification ¹	Csa (Hot-summer Mediterranean climate)
Heating Degree Days (HDD) ²	(2021) HDD = 1138 (T≤15°C)
Cooling Degree Days (CDD) ²	(2021) CDD = 1270 (T>22°C)

(1) Source: Updated Köppen-Geiger climate map of the World (https://people.eng.unimelb.edu.au/mpeel/koppen.html)

(2) Source: Turkish State Meteorological Service (https://www.mgm.gov.tr)

(3) Source: TÜİK - Turkish Statistical Institute

2. Climate Hazards Risk and Vulnerability Assessment

2.1 Applied Methodology

The Global Covenant of Mayors for Climate and Energy - Common Reporting Framework was used for assessing climate risks.

The Global Covenant of Mayors for Climate and Energy (GCoM) is the world's largest alliance of cities and local governments with a shared long-term vision to combat climate change and promote voluntary actions towards a low-emission, climate-resilient future.

Three surveys were conducted to assess potential climate hazards, current and future potential climate risks, their sectoral impacts including vulnerable populations. The survey forms were sent to the CCAP Working Group, all departments of the Metropolitan Municipality, and participants of the CCAP Stakeholder Workshop (online via Google Forms). The results were initially evaluated by the CCAP Working Group and subsequently at the CCAP Stakeholder Workshop held on May 25-26.

The survey studies have aimed at the following objectives:

Survey 1: Şanlıurfa Climate Hazards: Identification of current and potential future climate hazards.

Survey 2: Climate Impacts: Evaluation of the adverse effects of climate hazards on urban service sectors and vulnerable community segments.

Survey 3: Vulnerability Analysis: Assessment of future climate hazards identified as critical for Şanlıurfa; adverse effects on service sectors, existing adaptive capacity, and sectoral vulnerabilities.

According to the survey results, risk and vulnerability analysis is presented in Tables 1, 2, and 3.

Climate Hazards and Impacts

Climate Hazards and Impacts Taking into account past events related to numerous climate hazards, potential risks for Şanlıurfa have been identified, excluding less probable hazards such as sea level rise, monsoon rains, and typhoons.

Evaluated Climate Hazards: Drought, Water stress, Increased water demand, Fire weather (risk of wildfires), Urban flooding, River flooding, Coastal flooding (incl. sea level rise), Hurricanes, cyclones, and/or typhoons, Extreme wind, Storm, Heavy precipitation, Mass movement, Biodiversity loss, Loss of green space/green cover, Soil degradation/erosion, Other forms of climate-induced landscape shift/degradation, Infectious disease

Evaluated Sectors or Services: Agriculture, Forestry, Fishing, Mining and quarrying, Manufacturing, Electricity, gas, steam and air conditioning supply, Water supply, Sewerage,

waste treatment and remediation activities, Waste management, Administrative and support service activities, Public administration and defence; compulsory social security, Conservation, Construction, Wholesale and retail trade; repair of motor vehicles and motorcycles, Transportation and storage, Accommodation and food service activities, Information and communication, Financial and insurance activities, Real estate activities, Professional, scientific and technical activities, Education, Human health and social work activities, Arts, entertainment and recreation

Evaluated Vulnerable Community Segments: Women and girls, Children and youth, Elderly, Indigenous peoples, Marginalized/minority communities, Vulnerable health groups, Low-income households, Outdoor workers, Frontline workers, People with disabilities, migrants, small-scale producers

Efforts have been made to determine the potential impacts of these hazards on sectors and vulnerable community segments.

The potential impacts of evaluated climate hazards are described in the following table.

Climate-Related	Impact Description	Most Exposed Sectors	Vulnerable Population
Hazards	inipact Description	Wost Exposed Sectors	
nazarus			Groups Most Exposed
Extreme Rainfall	Submersion of transportation	Food-Agriculture-	Low-income households,
and Floods	lines, residential areas, and	Forestry, Transportation,	Small-scale producers
	agricultural lands due to	Waste-Wastewater,	
	surface flooding caused by excessive rainfall	Housing-Residential	
Storms -	Roof damage to buildings	Transportation, Food-	Vulnerable health
Tornadoes	due to excessive wind and	Agriculture-Forestry,	groups, Small-scale
	storms. Damage to seedlings	Housing-Residential	producers
	during flowering season		
Cold Wave /	Disruption of transportation	Food-Agriculture-	Vulnerable health
Frost Threat	due to severe winter	Forestry, Transportation,	groups, Small-scale
	conditions. Disruption in	Education, Public Health	producers, Elderly
	energy/water supply.		
	Decrease in agricultural yield due to spring frosts		
Extreme	Vital danger for chronic	Food-Agriculture-	Elderly, Small-scale
Heatwave / Heat	patients, elderly, and poor	Forestry, Public Health,	producers, Vulnerable
Stress	due to extreme heat. Forest	Energy and Water	health groups, Low-
	fires due to extreme heat.	Supply, Industry-Trade-	income households
	Decrease in agricultural and	Tourism	
	livestock production		
Drought	Decrease in agricultural	Food-Agriculture-	Elderly, Vulnerable
	production, soil salinization	Forestry, Energy and	health groups , Small-
	due to excessive irrigation.	Water Supply, Public	scale producers, Low-
	Decrease in energy	Health, Industry-Trade-	income households
	production and water	Tourism	
	reserves		
Soil	Decrease in agricultural yield.	Food-Agriculture-	Small-scale producers,

Table 3 - Climate Hazards and Potential Impacts

			· · · · · · · · · · · · · · · · · · ·
Degradation /	Excessive fertilizer	Forestry, Energy and	Low-income households,
Desertification	consumption	Water Supply, Industry-	Small-scale producers
		Trade-Tourism	
Insect	Decrease in agricultural yield	Food-Agriculture-	Small-scale producers,
Infestation	due to locust infestation	Forestry, Public Health,	Low-income households
		Housing-Residential	
Air and	Vital danger for chronic	Public Health, Food-	Elderly, Vulnerable
Waterborne	patients and elderly due to	Agriculture-Forestry,	health groups
Diseases	diseases transmitted through	Emergency	5
	air or water	Management, Education	
Vector-borne	Vital danger for chronic	Public Health,	Elderly, Vulnerable
Diseases	patients and elderly due to	Emergency	health groups
	diseases transmitted by	Management, Food-	
	insects and flies	Agriculture-Forestry	
Wild Fires	Decrease in forest areas. Fire	Food-Agriculture-	Vulnerable health groups
	and vital danger for	Forestry, Emergency	vanierable riedari greupe
	settlements near forests.	Management, Energy	
	Decrease in bee and other	and Water Supply,	
	insect populations. Vital	Housing-Residential	
	danger for wild animals	riousing residential	
Hail storms	Impact on fruit and vegetable	Food-Agriculture-	Small-scale Producers,
	production during flowering	Forestry, Transportation	Low-income households
	season due to excessive hail.	Torestry, Transportation	Low-income nousenoids
	Damage to vehicles due to		
	excessive hail		
Fog	Interruption of air traffic due	Transportation	Vulnerable health groups
i ug	to excessive fog	Παπορυτιατιοπ	vullerable fleatur groups
Landslides	0	Ruildingo Rosidontial	Low-income households
Lanusilues	Disruption of transportation. Risk of collapse for buildings	Buildings-Residential	
Avelenebes	in landslide-prone areas	Trenen entetien Terriere	Deeple with Dischilding
Avalanches	Vital danger for residents or	Transportation, Tourism,	People with Disabilities
	tourists. Disruption of	Buildings-Residential	
	transportation		

2.2 Climate Hazards and Current Risk Assessment

The potential climate hazards and their current risks in Şanlıurfa have been assessed through Survey 1. Accordingly, Drought, Extreme Heat Waves / Heat Island Effect, Soil Salinization / Desertification, Heavy Rainfalls and Floods, Hailstorms, and Airborne and Waterborne Diseases have been identified as the first priority climate hazards with serious or very serious impacts.

Table 4 - Climate Hazards Risk Assessment

Climate Hazards	Current Impact	Hazard Severity (m: 1-5)	Hazard Probability (p: 1-5)	Risk (m x p)
-----------------	----------------	--------------------------------	-----------------------------------	--------------

Heavy Rainfalls and Floods	Currently affecting the city	3 - Moderate	3 - Moderate	(9) Significant/Moderate
Storms and Tornadoes	Not currently affecting, potential future impact	2 - Low	1 - Low	(2) Not Serious/Low
Cold Wave / Frost Threat	Not currently affecting, potential future impact	2 - Low	2 - Low	(4) Not Serious/Low
Heat Wave / Heat Island Effect	Currently affecting the city	4 - High	5 - Very high	(20) Very Serious/High
Drought	Currently affecting the city	5 - Very high	4 - High	(20) Very Serious/High
Soil Salinization / Desertification	Currently affecting the city	4 - High	4 - High	(16) Very Serious/High
Insect Infestation	Not currently affecting, potential future impact	3 - Low	1 - Low	(3) Not Serious/Low
 Airborne and Waterborne Diseases 	Currently affecting the city	2 - Low	3 - Moderate	(6) Significant/Moderate
Vector-borne Diseases	Not currently affecting, potential future impact	3 - Moderate	1 - Very Iow	(3) Not Serious/Low
• Fires	Not currently affecting, potential future impact	2 - Low	2 - Low	(4) Not Serious/Low
Hailstorms	Currently affecting the city	3 - Moderate	2 - Low	(6) Significant/Moderate
• Fog	Not currently affecting, unlikely future impact	1 - Very Iow	1 - Very Iow	(1) Not Serious/Low
Landslides	Not currently affecting, unlikely future impact	2 - Low	1 - Very Iow	(2) Not Serious/Low
Avalanches	Not currently affecting, unlikely future impact	1 - Very Iow	2 - Low	(2) Not Serious/Low

Climate hazards have been assessed considering their severity and probability, and the assessment results are shown in the graph below.

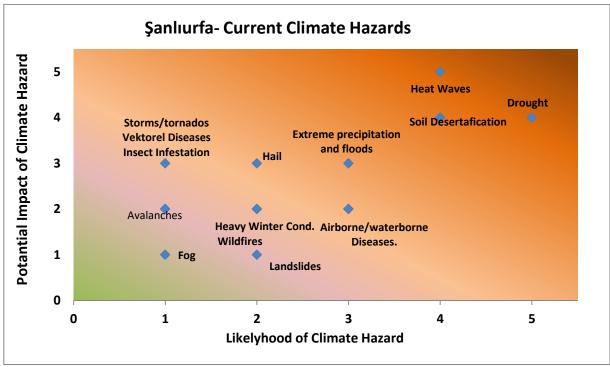


Figure 2 - Current Status Climate Hazards Graph

2.3 Future Risk Assessment of Climate Hazards

The future status of climate hazards and their impacts on service sectors have been evaluated through Survey 1 and Survey 2 studies. The extent to which the primary climate hazards could affect service sectors is shown in the table below.

Primary Climate Hazards	Future Status of Hazard Severity	Future Status of Hazard Likelihood	Probable Time Scale of Hazard	Top 5 Most Affected Sectors	Future Potential Impact Severity
				Food, Agriculture, Forestry	Very Severe/High
				Energy and Water Supply	Severe/Medium
Drought	Expected to Increase	Expected to Increase	Medium-term (2026-2050)	Public Health	Not Severe/Low
				Industry-Trade- Tourism	Not Severe/Low
				Waste-Wastewater	Not Severe/Low
				Public Health	Very Severe/High
Extreme Heat Waves / Heat Island Effect	Expected to	Expected to	Medium-term	Food, Agriculture, Forestry	Very Severe/High
	Increase	Increase	(2026-2050)	Energy and Water Supply	Severe/Medium

 Table 5- Sectoral Impacts of Climate Hazards

				Industry-Trade- Tourism	Not Severe/Low								
				Education	Not Severe/Low								
				Food, Agriculture, Forestry	Very Severe/High								
				Energy and Water Supply	Not Severe/Low								
Soil Salinization / Desertification		Medium-term (2026-2050)	Industry-Trade- Tourism	Not Severe/Low									
				Public Health	Not Severe/Low								
				Education	Not Severe/Low								
				Food, Agriculture, Forestry	Severe/Medium								
				Transportation	Severe/Medium								
Heavy Rainfalls	Expected to	Expected to	Medium-term	Waste-Wastewater	Severe/Medium								
and Floods	Increase			Energy and Water Supply	Severe/Medium								
				Housing- Settlements	Severe/Medium								
				Food, Agriculture, Forestry	Severe/Medium								
				Transportation	Severe/Medium								
Hail storms	Expected to	Expected to Stay the Same (2026-2050)	Waste-Wastewater	Not Severe/Low									
	Increase		Stay the Same	Stay the Same	Stay the Same	Stay the Same	Stay the Same	Stay the Same	Stay the Same	Stay the Same	Stay the Same	Stay the Same (2026-2050)	Energy and Water Supply
				Housing- Settlements	Not Severe/Low								
				Public Health	Severe/Medium								
				Housing- Settlements	Severe/Medium								
Airborne and Waterborne		Medium-term (2026-2050)	Emergency Management	Severe/Medium									
Diseases				Food, Agriculture, Forestry	Not Severe/Low								
				Education	Not Severe/Low								

Sectoral Vulnerability Analysis Against Climate Hazards

The adaptive capacities of service sectors against primary (major) climate hazards were evaluated through Survey 3. Sectors resilient or vulnerable to these prioritized hazards were identified and shown in the table and chart below. The assessment was based on the potential future impacts (PI) of climate hazards on the service/sector and the current adaptive capacity (AC) of the service or sector. The evaluation criteria are defined as follows:

Potential Impact (PI)

- **PI1** Very Low: Sector/Service is Not Affected.
- PI2 Low: Sector/Service May interrupt Temporarily
- **PI3** Medium: Sector/Service Shows Tendency to Deteriorate.
- PI4 High: Sector/Service Disrupt.
- PI5 Very High: Sector/Service Collapse. Unmanageable.

Adaptive Capacity (AC)

- AC1 Very High: No Improvement Needed for Adaptation.
- AC2 High: Additional Improvement May Be Necessary.
- AC3 Medium: Additional Investment Required for Adaptation.
- AC4 Very Low: High Investment Required for Adaptation.
- AC5 None: Very High Investment Required for Adaptation.

Table 6 – Sectoral Vulnerability Analysis

Primary Climate	Most Affected 5 Sector/Service	Potential Impact on Sector PI1 - PI5	Sector's Adaptive Capacity AC1 - AC5
Hazards		(Low - High)	(Low – High)
	Food, Agriculture, Forestry	PI3 - Sector/Service Shows Tendency to Deteriorate.	AC5 – Very High investment required.
	Energy and Water Supply	PI3 - Shows a tendency to deteriorate.	AC2 - Additional investment needed for adaptation.
Drought	Public Health	Pl2 - Low: Sector/Service May interrupt Temporarily	AC2 - Additional improvements may be necessary.
	Industry-Trade- Tourism	Pl2 - Sector/Service May interrupt Temporarily	AC2 - Additional improvements may be necessary.
	Waste-Wastewater	PI1 - Service not affected.	AC2 - Additional improvements may be necessary.
Heatwaves /	Public Health	PI5 - Service stops. Unmanageable.	AC4 - High investment required.
Heat Island	Food, Agriculture, Forestry	PI4 - High: Sector/Service Disrupt.	AC3 - Additional investment needed for adaptation.

	Energy and Water Supply	PI3 - Shows a tendency to deteriorate.	AC2 - Additional improvements may be necessary.
	Industry-Trade- Tourism	PI2 - Low: Sector/Service May interrupt Temporarily	AC2 - Additional improvements may be necessary.
	Education	PI2 - Low: Sector/Service May interrupt Temporarily	AC4 - Additional improvements may be necessary.
	Food, Agriculture, Forestry	PI4 - High: Sector/Service Disrupt.	AC4 - High investment required.
Soil Salinization	Energy and Water Supply	Pl2 - Low: Sector/Service May interrupt Temporarily	AC2 - Additional improvements may be necessary.
/ Desertification	Industry-Trade- Tourism	PI1 - Sector not affected.	AC2 - Additional improvements may be necessary.
	Public Health	PI1 - Service not affected.	AC1 - No need for improvement.
	Education	PI1 - Service not affected.	AC1 - No need for improvement.
	Waste-Wastewater	PI5 - Service stops. Unmanageable.	AC4 - High investment needed for adaptation.
	Food, Agriculture, Forestry	PI4 - High: Sector/Service Disrupt.	AC2 - Additional improvements may be necessary.
Heavy Rainfall (rain / snow) and Floods	Transportation	PI3 - Shows a tendency to deteriorate.	AC2 - Additional improvements may be necessary.
	Energy and Water Supply	Pl2 - Low: Sector/Service May interrupt Temporarily	AC3 - Additional investment needed for adaptation.
	Residential Areas	PI3 - Shows a tendency to deteriorate.	AC3 - Additional investment needed for adaptation.
	Food, Agriculture, Forestry	PI4 - High: Sector/Service Disrupt.	AC2 - Additional improvements may be necessary.
	Transportation	PI3 - Shows a tendency to deteriorate.	AC2 - Additional improvements may be necessary.
Hail	Waste-Wastewater	PI2 - Low: Sector/Service May interrupt Temporarily	AC2 - Additional improvements may be necessary.
	Energy and Water Supply	PI1 - Service not affected.	AC2 - Additional improvements may be necessary.
	Residential Areas	PI1 - Service not affected.	AC1 - No need for improvement.
	Public Health	PI4 - High: Sector/Service Disrupt.	AC3 - Additional investment needed for adaptation.
Airborne and Waterborne Diseases	Residential Areas	PI4 - High: Sector/Service Disrupt.	AC2 - Additional improvements may be necessary.
	Emergency Management	PI3 - Shows a tendency to deteriorate.	AC2 - Additional improvements may be necessary.

Methods		
Food, Agriculture, Forestry	PI1 - Sector not effected.	AC1 - No need for improvement.
Education	PI2 - Low: Sector/Service May interrupt Temporarily	AC2 - Additional improvements may be necessary.

The low adaptation capacity (vulnerable) services or sectors to future potential climate impacts in Şanlıurfa are shown in the following graph. In the graph, red areas represent **vulnerable** services or sectors, while green areas indicate **resilient** services or sectors.

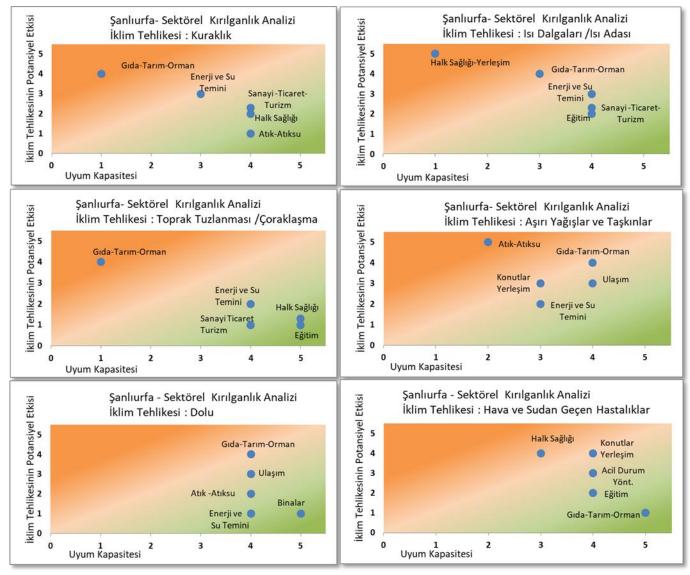


Figure 3 - Sectoral Vulnerability Graphs

2.4 Şanlıurfa Climate Projections

To be prepared for the consequences of climate change and to minimize its adverse effects, it is essential to predict how observed changes and trends in climate will unfold in the future, and to determine their impacts on natural and human systems. Understanding observed and past climates and forecasting future climates involves utilizing models that mathematically represent components of the climate system, their interactions, and feedbacks.

In preparing the Şanlıurfa Climate Action Plan, data from the HadGEM2-ES global dataset family, along with the RegCM4.3.4 regional climate model and Representative Concentration Pathways (RCP) scenarios, were used to evaluate future conditions of drought and heat waves. Among these scenarios, **RCP4.5** represents moderate radiative forcing and global warming levels, while **RCP8.5** represents the highest likely radiative forcing and worst-case global warming scenario.

For climate projection, data were obtained from the General Directorate of Meteorology according to the following scope:

Dataset:

- Global Climate Model: HadGEM2-ES
- Regional Climate Model: RegCM4.3.4
- Scenario: RCP4.5, RCP8.5

Parameters:

- Maximum Temperature (°C)
- Total Precipitation (mm)

Period:

- 2016-2098 (Future Period)
- 1971-2000 (Reference Period)

The averages of model data for a total of 48 coordinate points within the boundaries of Şanlıurfa province are shown in the table below:

Reference Period Parameter Data				
Reference Period			Annual Total Precipitation, mm	
1971-1980	21,07	41,27	465,7	
1981-1990	21,28	41,16	384,2	
1991-2000	21,50	41,46	471,6	

Table 7 – Climate Projection Data for Reference Period and Future Period

Future Period Parameter Data						
Future Period		Average Max. Jures, T °C	Highest Temperatures of the Year, T °C		Annual Total Precipitation, mm	
	RCP4.5	RCP8.5	RCP4.5	RCP8.5	RCP4.5	RCP8.5
2016-2021	22,38	22,64	43,07	42,47	500,7	489,1
2021-2030	23,14	23,25	43,81	43,71	401,0	424,6
2031-2040	23,97	24,15	44,51	44,78	337,9	386,9
2041-2050	24,17	24,74	44,80	45,42	363,9	344,9
2051-2060	24,45	25,38	44,78	46,78	377,7	329,9
2061-2070	25,15	26,50	45,59	46,67	304,4	295,9
2071-2080	24,91	26,83	45,33	47,97	387,1	355,5
2081-2090	25,18	27,47	46,52	48,50	369,3	382,4
2091-2099	25,57	28,27	45,81	50,00	281,1	323,7

Table 8 - Climate Projections

1990-2000 Period Projections (Increase or Decrease)							
Future Period	Increase in Average Monthly Maximum Temperatures T °C		Maximum	Increase in Annual Maximum Temperatures T °C		Decrease in Annual Total Precipitation %	
	RCP4,5	RCP8,5	RCP4.5	RCP8.5	RCP4.5	RCP8.5	
2016-2021	+0,88 °C	+1,14 °C	+1,61 °C	+1,01 °C	+% 6,2	+%3,7	
2021-2030	+1,64 °C	+1,75°C	+2,35 °C	+2,25 °C	-%15,0	-%10,0	
2031-2040	+2,47 °C	+2,65 °C	+3,05 °C	+3,32 °C	-%28,4	-%18,0	
2041-2050	+2,67 °C	+3,24 °C	+3,34 °C	+3,96 °C	-%22,8	-%26,9	
2051-2060	+2,95 °C	+3,88°C	+3,32 °C	+5,32 °C	-%19,9	-%30,0	
2061-2070	+3,65 °C	+5,00 °C	+4,13 °C	+5,21 °C	-%35,5	-%37,3	
2071-2080	+3,41 °C	+5,33 °C	+3,87 °C	+6,51 °C	-%17,9	-%24,6	
2081-2090	+3,68 °C	+5,97 °C	+5,06 °C	+7,04 °C	-%21,7	-%18,9	
2091-2099	+4,07 °C	+6,77 °C	+4,35 °C	+8,54 °C	-%40,4	-%31,4	

The modelling study shows projections for temperature and precipitation parameters between the Reference Period 1991-2000 and the Future Period, as presented in Table 7 and Table 8

According to these projections, between 2050-2060, average monthly maximum temperatures are expected to increase by 2,1 - 2,7°C under RCP4.5 and RCP8.5 scenarios compared to the 2016-2021 period. Similarly, annual maximum temperatures are projected to increase by 1,7 - 4,3°C. These temperature increases are likely to significantly increase the frequency and intensity of heat waves, potentially leading to severe adverse

effects across various sectors, particularly public health, if no preventive measures are taken.

In terms of annual total precipitation, a decrease of approximately **26% - 34%** is expected under **RCP 4.5** and **RCP 8.5** scenarios. This reduction in precipitation could exacerbate the risk of drought in the Sanliurfa region, lead to a greater need for irrigation, transition to efficient irrigation systems, and escalate the seriousness of soil salinization and desertification due to less water availability. Moreover, it may further increase water consumption and energy demand.

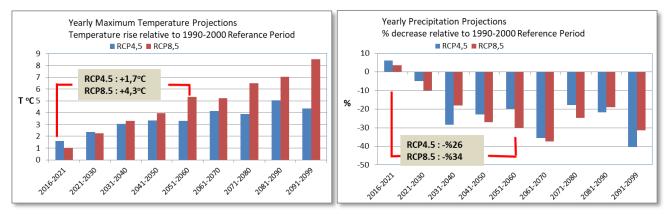


Figure 4 - Extreme Temperature and Drought Projections

3. Adaptation Strategies and Objectives

ŞANLIURFA ADAPTATION STRATEGIES

Strategy 1 – Climate-Resilient Settlements and Healthy Urban Living

Strategy 2 – Combating Drought and Sustainable Agriculture

Strategy 1 – Climate-Resilient Settlements and Healthy Urban Living

Objective 1.1 - Disaster Risk Reduction and Protection Programs

Objective 1.2 - Climate-Resilient Urban Development and Planning

Objective 1.3 - Protection of Vulnerable Community Segments and Healthy Urban Living

GOALS				
2035	2050			
Capacity increase and renovation investments in all rainwater collection channels across the city to match the 100-year rainfall intensity	Making city infrastructure and existin structures resilient against climate extreme through zoning regulations and urba transformation efforts			
Action 1.1.1 - Emergency Preparedness ar	nd Response Program for Climate Disasters			
Action 1.1.2 - Capacity Development Progr and Systems	ram for Surface Flood Prevention Structures			

Objective 1.2 – Climate-Resilient Urban Development and Urban Planning		
GOALS		
2035 2050		

Increasing urban green space per capita by 100%, from 4.6 m ² to 9 m ²	Establishing accessible green areas and parks in every neighbourhood with a minimum area of 0.5 hectares to achieve a homogeneous distribution across the city, and increasing green space per capita to 15 m^2
--	---

Action 1.2.1 - Increasing Urban Green Spaces to International Standards

Action 1.2.2 - Urban Planning for Climate-Resilient Cities

Objective 1.3 – Protection of Vulnerable Population Segments and Healthy Urban Living				
GOALS				
2035 2050				
Implementation of physical and social protection mechanisms against the devastating effects of heatwaves on the vulnerable population living in Şanlıurfa				
Action 1.3.1 - Protection and Support of Vulnerable Population Segments against Climate Hazards				
Action 1.3.2 - Preservation of Air Quality				
Action 1.3.3 - Preventive Activities against Climate-Related Diseases				
Action 1.3.4 - Strengthening of urban infrastructure and facilities against mass migration from				

Strategy 2 – Combatting Drought and Sustainable Agriculture

neighbouring regions

Objective 2.1 – Conservation, Development, and Efficient Demand Management of Water Resources

Objective 2.2 – Drought and Desertification Combat and Prevention Program

Objective 2.3 – Sustainable Agriculture and Food Security from Field to Table

Objective 2.1 – Conservation, Development, and Effective Supply and Demand Management of Water Resources

GOALS				
2035	2050			
 Increase the population served by wastewater treatment services from 48% to 95%. Reduce network water leakage by 50%. 	Reuse of treated water, rainwater harvesting, and greywater systems to be widely adopted throughout the city.			

Action 2.1.1 - Develop solutions for reducing water leaks and effective demand management.

Action 2.1.2 - Develop systems for water recovery and reuse.

Action 2.1.3 - Oversight of preventive activities for the conservation of water resources.

Objective 2.2 - Drought and Desertification Prevention and Mitigation Program

GOALS	
2035	2050
 Implementation of educational activities and administrative regulations containing sanctions aimed at eliminating wild irrigation within city limits Completion of rehabilitation investments with drainage channels in agricultural areas experiencing rising groundwater and desertification 	 Completion of necessary investments for the transformation of open system fields into closed pressurized systems in currently open systems within city limits Widespread adoption of technological applications such as subsurface and surface drip irrigation, soil moisture measurement, automation, remote control, and monitoring throughout the province
Action 2.2.1: Prepare and implement a structural transformation program to increase irrigation efficiency.	

Action 2.2.2: Prepare and implement a research and rehabilitation program to prevent desertification in agricultural lands.

Action 2.2.3: Conduct education, awareness, and consciousness-raising activities on the adverse effects of drought and over-irrigation.

Sanliurfa Metropolitan Municipality Department of Climate Change and Zero Waste

October 2022, ŞANLIURFA

Consultancy and Technical Support:

